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The operating principle is examined for a thermooptical gas analyzer. The problem 
of multiparametric optimization of the analyzer operating mode is solved for a mix- 
ture of nitric oxide + air. 

Determination of the quantitative composition of gas mixtures is based on the measure- 
ment of some physicochemical parameter of the mixture. The more strongly the magnitude of 
the parameter depends on the mixture composition, the more accurately is the gas content 
measured therein. The difference rather than the absolute value of the mixture monitoring 
parameter is determined in order to increase measurement accuracy in the majority of gas 
analysis methods. Thus, the difference between the refractive indices of the standard gas 
and the test mixture is recorded in the refractometer method. The thermooptical analysis 
method [I] assumes the creation of a gradient in the index of refraction directly in the mix- 
ture being analyzed by the superposition of stable external fields, in time, on the volume 
being monitored. Their selection should be dictated by reasons of expediency. In this case, 
hydrodynamic and thermal fields were utilized simultaneously. Realization of the method is 
sufficiently simple here. The gas mixture being analyzed was set into motion along the axis 
of a cylindrical tube whose walls were heated. It is known that in this case [2] a fully 
developed temperature profile is established for a sufficiently long tube length: 
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Now, if a beam is started along the channel axis, its trajectory is then determined in a 
cylindrical coordinate system by a system of differential equations [3]: 
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As is seen from (2)-(4), the beam trajectory will depend on both the magnitude of the 
external force fields, i.e., on the heat flux and gas flow velocity in the channel, which 
enters into the Reynolds number, and on the physical characteristics of the gas mixture, 
which can be combined in the parameter 
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which is the ratio between the gas mixture optical and thermophysical characteristics. 

Therefore, for constant external force fields the radiation characteristics at the exit 
from the channel with the gas mixture will be determined single-valuedly by the parameter 
(5), which is, in turn~ associated with the gas composition of the mixture. 

The measurement cuvette depicted schematically in Fig. 1 was the fundamental experi- 
mental gas analytic apparatus, which included an optical bench with a radiation source, an 
LG-78 laser, an apparatus to fasten and adjust the measurement cuvette and the sensor opti- 
cal beam width at the exit from the cuvette or the angle of arrival. Moreover, a flow rate 
booster with a rheometer to feed the gas mixture to the cuvette and a stabilized voltage 
source to heat the cuvette walls were part of the apparatus. 
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Fig. i. Measurement cuvette: I) cylindrical 
channel; 2) apparatus for gas mixture inser" 
tion; 3) porous insert; 4) heater; 5) connect- 
ing pipe. 
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Fig. 2. Dependence of the angle of beam arrival ~(i0 s tad), 
through the cuvette, on the composition (%) of the nitrogen oxide + 
air mixture for a different heating temperature: I) AT = 45~ 2) 
50; 3) 55. 

Fig. 3. Determination of the compromise zone corresponding to 10% 
accuracy in regulation of the mixture flow rate and cuvette heating 
temperature: I) isolines for aY/0x~; 2) for 0Y/~x2. G in cm~/sec 
and N20 in %. 

Preliminary experiments showed that the thermooptical analyzer possesses a linear char- 
acteristic in a broad band of concentrations. Results obtained for an air + nitrogen mix- 
ture in a N~O concentration range to 30% are presented in Fig. 2, which indicate a de- 
pendence of the analyzer calibration characteristic on the cuvette heating temperature and 
the gas flow rate. To optimize the gas analyzer apparatus characteristics~ an investigation 
was later performed by the method of experiment planning [4]. Selected as independent fac- 
tors were: the magnitude of the cuvette wall heating temperature (X:), the flow rate of the 
gas mixture (X~), the heating temperature gradient along the cuvette length (X3), the length 
of the heated cuvette (X~), and the concentration of one of the gases in the mixture (Xs). 
Selected as the output parameter was the light beam width at the exit from the cuvette (Y). 
The factors were later made dimensionless and normalized so that the factor space was bounded 
by a multidimensional cube with vertex coordinates x i = Ill, where 

Xi --  0.5 ( X ~  § X~i~) (6) 
X t = 

0.5 (Ximax - -  Ximin ) 

An almost D-optimal plan of type Has was used to describe the zone of the experiment. 
It is quite economical since only 27 points exist for the determination of 21 effects (the 
principal semireplica PFE 25-: , i0 asterisk points for x i = • and the central point). 

Realization of the plan permitted obtaining anadequate second-order polynomial model 

Y = 1074,85--73.78x1--132,45x2--36.28x3--73~--94.9xs--54,28x~-- 
(7) 
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TABLE i. Alternative Solutions of Output Parameter Minimiza- 
tion 

~er  
version 

X1 

.q-1 
-+1 
+ 1  
--1 
+ 1  

X2 

q-1 

--1 

- -1  

X~ 

q-1 
-l-J 

. + I  

--1 

X4 

q-1 

--1 
- - I  
--1 

226,94 
g30,52 

1025,49 
1094,1 
1097,45 

C~Ym[ n 
ax5 

---214,5 
.- 1:38,4 
- -143 ,5  
- -  10,9 

107,7 

whose analysis confirms the deduction made earlier that the characteristic of the thermoop- 
tical gas analyzer is linear. Indeed, as a regression analysis showed, the square term 
b55x~ is insignificant. The sufficiently strong dependence of the output parameter on the 
magnitude of the flow rate (x=) and the heating temperature (x,) is also confirmed. 

Let us examine the expression for the cuvette sensitivity to a change in the concentra- 
tion of one of the mixture components (xb) for which we take the derivative of (7): 

OK =__94.9__66.19&__35.56x2__17.81x3. ( 8 )  
0x5 

It is easy to see that aY/dx5 depends, at first glance, on the cuvette heating temperature, 
the magnitude of the mixture flow rate but is independent of the cuvette length (x~). 

The strong dependence on the regime parameters naturally requires strict stabilization. 
In this connection, the optimization problem was formulated as follows: Find the value or 
range of variation of the regime parameters for which the minimum cuvette response to heating 
temperature changes and the mixture flow rate through the cuvette would correspond to the 
maximum cuvette response to the mixture composition. The solution of such a problem would 
permit reduction in the requirement of stability in maintaining the operating regime and 
would thereby simplify the apparatus and its servicing. 

The minimal value Ymin of the output parameter of the model (7) was sought in the first 
step of the optimization. The search was performed by the algorithm of the dissociative- 
step method proposed in [5]. The results are presented in Table I. 

Comparison of the alternative solutions in the quantity Ymin shows that the first ver- 
sion has the best reading; however, versions 2 and 3 should not be discarded since they have 
a OYmin/aX5 close to first magnitude. Only two regime factors are determined reliably in 
this stage: x, = +i and x3 = +I. It was established earlier that the cuvette length exerts 
no influence on the response of aY/ xn, hence it is possible to set x~ = -i, which permits 
diminishing the cuvette length and the size of the gas analyzer as well. 

The expressions for the cuvette response to changes in temperature and mixture flow 
rate have the form 

aY 
= - -  73,78 -- 79,56x2 -- 17.18x3 -- 49, ]9~ -- 66.19x5, (9) 

Oxl 

a__KY = _ 132.45 -- I08.56x~-- 79.56x I -- 51,81x~ -- 35.56x5 (i0) 
@x~ 

After substituting the magnitudes of the factors found, we obtain 

OY dx~ = - -  4 7 . 7 7  - -  7 9 . 5 6 x .  - -  66 .19x5,  ( 1 1 )  

O__yY = _ 1 6 0 . 2 - -  108.56x2 -- 35.56x5.  (12) 
ax2 

For zero responses 0Y/0xi, the system (11)-(12) has no solution in a factor space with 
boundaries x i = Ill. Only a compromise solution with assumptions about the allowable magni- 
tude of the equation parameters is possible. 

Experimental determination of the mixture flow rate through the cuvette was realized 
with • accuracy, which corresponded in the encoded variables to Ax= = • On the other 
hand, it follows from (8) that the magnitude of the factor x2 should be closer to the upper 
level. We assume the allowable diminution in the response aY/Ox5 should not exceed 20%. 
This corresponds to the domain of positive values of x2. If xs = 0-0.4, then this implies 
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a diminution in aY/~xs of not more than 15%. In this case the system (11)-(12) is easily 
solved graphically, to give the domain of allowable changes in x= and its corresponding con- 
centrations (Fig. 3). The allowable interval of the cuvette temperature change is determined 
easily from (i0): x~ = 1-0.35, which corresponds to T = 45.2 • 4.8~ in natural variables. 
Therefore, the operating regime found for the thermooptical gas analyzer requires • ac- 
curacy in maintaining the magnitude of the flow rate and the heating temperature. 

NOTATION 

T, t empera tu re ;  q, hea t  f l u x ;  R, channel  r a d i u s ;  6, r ,  z, c o o r d i n a t e s ;  r = r /R;  Eo, 

dielectric permittivity of the gas; ~, arc length; ~ = ~ ~-*/2do; ~ = z/R; ~, heat-con- 

0 
duc t ion  c o e f f i c i e n t ;  Re, Reynolds number; Pr ,  P rand t !  number; x i ,  c e o r d i n a t e s  in  f a c t o r  space~ 

II 
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EXISTENCE OF A CLASSICAL VARIATIONAL PRINCIPLE FOR NONLINEAR 

COUPLED HEAT AND MASS TRANSPORT 

Yu. T. Glazunov UDC 536.248:517.972.5 

Using the example of nonlinear coupled heat and mass'transport, we examine whether 
a functional exists for which the required kinetic equations follow from the condi- 
tion that the functional be stationary. 

In nonlinear problems of heat conduction and coupled heat and mass transport, varia- 
tional methods are widely used today. These methods are based on variational formulations 
of the problem, called in physics variational principles. 

In the restricted sense, by a variational principle we mean the statement that a cer- 
tain functional must attain a maximum or minimum [I]. This functional contains all of the 
defining equations and boundary conditions for the problem. Thus, the equations and bound- 
ary conditions follow from the variational formulation as conditions that the functional be 
stationary (the Euler equations). We will refer to this kind of variational formulation as 
a classical variational principle. Examples include Hamilton's principle of least action 
in mechanics [2], Castilyan's principle in the theory of elasticity [3], Fermat's principle 
in optics [4], and certain variational principles in the classical and relativistic theory 
of fields. 

The classical variational formulations are distinguished by simplicity, generality, 
elegance, and are of heuristic value as well. However, attempts a~ obtaining these varia- 
tional principles by fitting a variational equation to a problem previously formulated in 
differential form is difficult and not always successful. This is because many differential 
equations and systems of equations, especially nonlinear ones, do not have classical varia- 
tional principles. 
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